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Abstract—Graph algorithms have gained popularity and are
utilized in high performance and mobile computing paradigms.
Input dependence due to input graph changes leads to per-
formance variations in such algorithms. The impact of input
dependence for graph algorithms is not well studied in the context
of approximate computing. This paper conducts such analysis
by applying loop perforation, which is a general approximation
mechanism that transforms the program loops to drop a subset
of their total iterations. The analysis identifies the need to adapt
the inner and outer loop perforation as a function of input
graph characteristics, such as the density or size of the graph.
A predictive model is proposed to learn the near-optimal loop
perforation rates using synthetic input graphs. When the input-
aware loop perforation model is applied to real world graphs, the
evaluated graph algorithms systematically degrade accuracy to
achieve performance and power benefits. Results show ∼30%
performance and ∼19% power utilization improvements on
average at a program accuracy loss threshold of 10% for an
NVidia R© GPU. The analysis is also conducted for two concurrent
Intel R© CPU architectures, an 8-core XeonTM and a 61-core Xeon
PhiTM machine.

I. INTRODUCTION

Graph algorithms working on structured and un-structured

data have surpassed great computational complexities and

memory requirements. Large-scale graph datasets, such as

weather and transportation models require sensor-to-decision
processing [1]. Due to the humongous available set of these

diverse input graphs, sensitivity to data variations results in

performance fluctuations. Therefor, the notion of reducing

complexity falls on the target algorithms and data that is run

for decision analytics, which is why approximate algorithms

are utilized to improve performance.

Exact graph algorithms are used in various applications,

such as the Bellman-Ford algorithm [2] that computes shortest

paths, and PageRank [3] that ranks webpages. However, their

exact nature exemplifies that a complete set of iterations and

data is needed to be processed to get an optimal result. Un-

dermining this exact nature results in approximations, where

reduced complexity can be obtained whilst approximating

output accuracy. When input dependence comes into play,

approximation thresholds and other program level parameters

change. Hence, performance constraints in such aspects be-

comes variable, and need further analysis for optimizations.

Many of today’s graph applications must guarantee a re-

sponse within a specified time constraint [4]. While design-

ing such applications, the goal is to reduce the amount of

computations for these time-critical systems, yet achieve an

optimal quality of service (QoS). Loop perforation [5], [6]

provides a general technique to trade accuracy for performance
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Fig. 1: Perforation rates vary the output accuracy across

various input graphs for the PageRank graph algorithm.

by transforming algorithmic loops to execute a subset of their

iterations. It has the potential to achieve optimum performance,

alongside a reasonable output accuracy for a given accuracy

loss threshold. Prior work [6] shows that perforating appro-

priate loops within an application not only ensures reduction

in computations, but also yields a managed decrease in output

accuracy. This leads to an accuracy versus efficiency tradeoff.

In the context of graphs, perforations can be done on

input graphs or graph algorithms. When perforating input

graphs, many perforated graphs are stored and later looked

up once a perforation rate is selected. However, in the case of

perforating graph algorithms, additional computation steps are

added to the code, while the graph itself is left unmodified. The

algorithmic overheads are difficult to compensate with benefits

acquired by loop perforation. We justify this observation in

this paper, and observe that loop perforation is useful when

the graphs are perforated. This leads to space overhead that is

mitigated using a novel loop perforation predictor that can be

used to store the additional perforated graph for future use. The

evaluation justifies that applying loop perforation to the input

graph leads to reductions in computations, and thus perfor-

mance improvements and energy reductions. Furthermore, the

proposed predictor is capable of choosing the right perforation

rate that is input aware. This is fundamentally different from

prior algorithmic works [7], where a single perforation rate is

applied to the algorithm for all inputs.

Due to many available benchmark-input combinations for

graph algorithms, statically assigned perforation rates show

variations in output accuracy because of input dependence [8],

[9]. This naive perforation approach is also shown in Figure 1,

where different input graphs (CRN is a sparse CA road

network, MBR is a dense Mouse brain graph, and LJ, FB, and
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RGG are social networks) for the PageRank benchmark give

different accuracy outcomes for a single perforation rate. If a

user provides an accuracy loss constraint of 10%, then all the

shown peroration rates pass the threshold constraint for CRN.

However, for the remaining graphs, 50% perforation rate is not

acceptable as it results in a higher accuracy loss. To satisfy

the accuracy constraint for these input graphs, perforation

rates lower than 50% are required. Consequqntly, for MBR

and RGG, the perforation rate of 20% meets the accuracy

threshold. For FB and LJ, perforation rates of 40% and 30%

are used. This shows that for a given accuracy threshold there

is a need to select the right perforation rate based on the input

graph characteristics. If the selected perforation rate is lower

than the optimal, it results in lost opportunity for efficiency

gains. On the other hand, if the selected rate is higher, then the

accuracy threshold is violated. Therefore, the perforation rate

should be selected such that the algorithm operates close to

the accuracy threshold for efficient execution, and not violate

this constraint.

This paper analyzes input dependence of graphs to for-

mulate a prediction paradigm that selects loop perforation

thresholds. As graph algorithms primarily consist of inner

and outer loops (traversing edges and vertices respectively),

perforation on these loops is done to improve efficiency. Per-

forating in a combined fashion can be captured by exhaustively

exploring the perforation space, or by predicting perforation

rates based on graph characteristics. A predictor is useful in

real-time setups where applications exhibit timing constraints

for processing graphs. We propose offline learning that reasons

contextually for graph characteristics, and captures optimal

perforation rates using a wide range of representative graphs.

The learned predictor is evaluated online for real graphs to

select the perforation rates for a given accuracy threshold.

The objective of the predictor is to select accurate yet fast

decision to choose the perforation rates that operate close to

the accuracy threshold, and maximize the number of perforated

edges in the graph.

This paper makes the following contributions:

1) We show that by perforating input graphs instead of

graph algorithms, performance can be extracted from

loop perforation in graph analytics.

2) We identify the challenge with input dependence in

loop perforation for graphs. The proposed input-aware

perforation predictor enables the graph algorithm to pro-

duce an output that satisfies program accuracy threshold,

while maximizing the number of dropped edges.

3) The performance and energy gains due to loop perfora-

tion of graphs are evaluated for various CPU and GPU

architectures.

II. RELATED WORK

A significant amount of work on approximating graph

algorithms has resulted in a wide range of heuristic algo-

rithms. Examples include shortest path approximations [10]

and streaming algorithms [11]. Δ-stepping [12] is a well-

known implementation of the shortest path problem that classi-

fies vertices as light or heavy based on their connectivity and

edge weights. Based on this classification different vertices

are relaxed iteratively using different iteration counts. Other

works follow different flavors of approximations for light and

heavy vertices [13]. However, such works do not analyze

approximate graph algorithms across various real graph inputs,

as well as diverse architectures. Such analysis is required in

today’s computational world where new compute paradigms

are gaining momentum, such as multi-architecture compute

nodes [14]. Analysis is done across accuracy, performance,

and power for a diverse set of graph benchmark–input com-

binations.

Loop perforation enables a general approximation strategy

by dropping a subset of total loop iterations. Prior works, such

as [6], [15] use loop perforation to observe the performance

and quality of service tradeoff space. These works focus

on generic applications that do not include graph analytics.

However, analyzing graph algorithms is the primary objective

of this paper, and a novel input dependence aware loop

perforation strategy is proposed.

III. INPUT DEPENDENCE AWARE LOOP PERFORATION

A. Loop Perforation in Graph Algorithms

In general, graph algorithms consists of two types of loops.

The outer loop shown in Algorithm 1 Line 5, iterates over

all vertices in the input graph network. For each vertex, the

inner loop (shown in Algorithm 1 Line 6) traverses over all the

neighbors to compute based on the connectivity and weights

on the connected edges. Graph algorithms may consist of

different phases and/or iterations of the inner and outer loops.

Algorithm 1 Generic Structure of Graph Algorithms

1: Total Vertices and Edges per Vertex: N,DEG
2: Set of Vertices: V = {v1, v2, ..., vN}
3: Set of Edges: EV = {e1, e2, ..., eDEG}
4: \∗ May Iterate Multiple Times ∗\
5: for each v ε V do
6: for each e ε Ev do
7: \∗ Do Computations ∗\

Loop perforation can be applied to graphs at two different

regions, namely inner loop and outer loop. Perforating the

inner loop iterations implies perforating the edges of a vertex

in the graph. This approach randomly drops the edges of any

arbitrary vertex, as depicted in Figure 2. On the other hand,

perforating outer loop iterations results in dropping the vertices

from the input graph. Based on the perforation rate, vertices

along with their connected edges are dropped in the input

graph, as shown in Figure 2. Note that the proposed approach

focuses on perforating the graph network based on graph

parameters rather than algorithm-level perforations. Further

justification of this perforation strategy is discussed in the next

subsection.

The inner and outer loop perforation schemes exhibit trade-

offs in efficiency and accuracy. Inner loop perforation results
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Fig. 2: An example of applying various perforation strategies

on graphs.

in dropping less computational work, however it provides fine-

grain quantization of accuracy loss, specially for relatively

dense graphs. Taking sparse graphs as an example, which

have limited edge connectivity, inner loop perforation needs

a very high perforation rate to impact accuracy. However, in

dense graphs there is more dependence on edges, and hence

higher accuracy losses are expected. On the other hand, outer

loop perforation results in more accuracy loss as compared

to inner loop perforation. This strategy enables better control

over accuracy loss for sparse graphs. However, as the density

of the graphs increases, outer loop perforation results in higher

accuracy loss. This is due to the fact that outer loop perforation

skips more computations as vertices along with their edges

are dropped. The goal of this paper is to find the optimal

point where perforation rates are selected such that they

result in an accuracy loss closest to the accuracy threshold,

while maximizing the number of edges dropped. A systematic

combinatorial search space of the outer (εo) and inner (εi) loop

perforation rates can be conducted to find the near optimal

accuracy loss. Loop perforation is done randomly based on

the parameters of the input graph network. To conduct a

rigorous analysis, various outer loop perforation rates (εo)

are considered, and for each εo the input graph is subjected

to various inner loop perforation rates (εi). The analysis is

performed over all the benchmark–input combinations.

After random perforation of a graph there exists a scenario

where a single vertex connecting two portions of an input

graph gets perforated. This would result in a graph disconnect,

which could cause algorithmic inaccuracies. To circumvent

such a scenario, a connection-check step is added towards the

end of the perforation framework. A connected components

algorithm, with a complexity of O(logn), is applied to the

perforated graph which detects if a set of vertices are not

connected to any part of the given graph. Multiple components

in a given perforated graph will trigger a roll-back of the

perforation step, which would then re-run another random

perforation. This is done iteratively until a perforated graph

is acquired with no multiple components.

B. Perforating Graphs versus Algorithms

Loop perforation can either be done at the algorithm level,

or at the input graph level. Nevertheless, both perforation

strategies have their pros and cons. In prior works for general

applications [6], loop perforation is done at the algorithm

level by dropping pre-calculated number of iterations from

the program loops. Dropping first or last x number of iter-

Program Level Perforation
Strategy % Edges Dropped Accuracy Performance

Dropping Random 49% 9.92 3× Loss

Iterations

Dropping First 5.1% 9.89 20% Loss

Iterations

Dropping Last 5.1% 9.89 13% Loss

Iterations

Input Graph Level Perforation
Strategy % Edges Dropped Accuracy Performance

Dropping Random 49% 9.92 26% Gain

Vertices/Edges

TABLE I: Comparison between optimal Program level perfo-

ration schemes and Graph level perforation for an accuracy

threshold of 10%.

ations of the loop is a common practice when performing

program level perforation. Moreover, loop iterations can also

be dropped randomly within the algorithm. However, program

level random perforation incurs large overheads as it requires

random selection of loop iterations to be dropped. Random

perforation can also be done at the input graph level by

dropping vertices/edges rather than dropping loop traversals

that iterate over all the vertices/edges. Table I shows the

comparison between program level perforation and graph

level perforation. In this table, % Edges Dropped refers to

the computations dropped as a consequence of perforation.

Accuracy and Performance quantify the accuracy loss and

performance numbers, respectively, as a result of the applied

perforation scheme. Following insights are observed from the

comparison.

1) For analyzing perforation in graph algorithms, it is better

to drop loop iterations randomly (49% dropped edges)

because this scheme allows more computations to be

dropped as compared to systematically dropping loop it-

erations at the beginning or end of a loop (5.1% dropped

edges). However, introducing random functions to de-

termine which loop iteration to drop adds significant

computations to the graph algorithm. This results in an

overall performance loss since loop perforation benefits

do not compensate for the algorithm level overheads.

2) Within random perforation, it is beneficial in terms of

performance to randomly drop vertices/edges from the

input graph itself, rather than dropping respective loop

iterations from the algorithm.

When the resultant graph obtained from dropping ver-

tices/edges is provided to the graph algorithm, it achieves an

average performance gain of 26% with respect to the original

run of the algorithm. However, with program level random

perforation, a huge performance loss of 3× is observed. This

is due to the fact that rand() system call that is used for

uniform distribution incurs high overheads. Hence, to avoid

such performance hits during execution, we perforate the input

graphs provided to the application. Graph level perforation
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not only provides better performance but it also preserves the

exactness as the algorithm itself is never altered. Nevertheless,

this random perforation strategy introduces a compute – space

tradeoff, as introduced earlier in Section I. Perforating graphs

requires a database to store the set of perforated graphs

but provides higher performance gains. On the other hand,

program level random perforation has no space limitations but

incurs computational overheads.
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C. Prediction Models for Selecting Graph Perforation

Due to sub-optimal accuracy and performance outputs ac-

quired using static perforation (explained in Section I), it is

imperative to use dynamic perforation rates for each input

graph. A learning model framework is therefore developed

(shown in Figure 3), that takes in a graph benchmark-input

combination and an accuracy threshold from a user, and

outputs the perforation rate for both inner and outer loops.

Two different learning models are presented for learning on

perforated graphs. Multiple Non-Linear Regression [16] ex-

hibits low performance overhead, and tolerable output learning

accuracy. The Multi-Layer Perceptron (MLP) learner [17]

learns on the non-linear aspects of accuracy and performance

tradeoffs [14] in perforated graphs. These non-linear aspects

are exhibited in Figure 4, where for a given accuracy threshold

of 10%, few points exist that can be potentially picked up by

a predictor when selecting edges dropped by perforating the

graph. The goal is to maximize the output accuracy loss close

to 10%, but also maximize the performance by selecting the

highest number of edges dropped via perforation. The zoomed
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Fig. 5: Learner Paradigm with Inputs, Outputs, and the differ-

ent applied learners.

version in Figure 4 shows these potential points. Prediction

accuracy needs to be high enough to correspond to these two

variables, and the point with highest performance must be

selected. This classification accuracy is bounded to 5% within

the optimal point, as in various prior works [5], [6].

For training the learners, uniform random graphs [18] are

used as synthetic training inputs, as they precisely model

representative real-world graphs. These input graphs correlate

directly with perforation rates, and based on this insight the

learner learns a wide range of input graph characteristics, such

as graph size, degree, and diameter to name a few. Inner and

outer perforations are amalgamated into a single parameter of

edges dropped, which is then used for learning. The generated

synthetic inputs are run with all target graph benchmarks, as

well as with various inner and outer loop perforation rates.

Accuracy results are computed as outputs for each benchmark-

input combination, and used for the learning process to find a

near-optimal perforation rate. Predicted results are required to

be within 5% of the optimal accuracy point, as well as within

5% of the optimal point representing the number of dropped

edges. This process is repeated for all given benchmark-input-

accuracy threshold combinations. For a 90% classification

accuracy, a 6th order equation is required for the non-linear

regression model. For the MLP learner, a neural network with

160 neurons provides 90% classification accuracy. The high

complexity of the learners pertain to the stringent 5% error re-

quirement. A given learner model then outputs the perforation

rate pair (εo, εi) for the user accuracy loss threshold, as shown

in Figure 5. Variations of the regression and MLP model are

evaluated in the evaluation section, along with their respective

accuracies and overall average acquired performance.

IV. METHODOLOGY

A. Machine Settings

An 8-core Intel R© i7, NVidia R© MaxwellTM GPU [19], and

a large-scale Intel R© Xeon PhiTM multicore [20] are used for

evaluation. Nvidia GTX-970 GPU is used in which the work

group size, which specifies the number of worker-threads

operating on a local memory chunk, can be varied from 1

to 1024, while the total thread count can be varied from 1 up

to a million threads. A Xeon Phi 7120P is used as a large-

scale target multicore. It has 61 Intel 4-way multi-threaded

cores leading to a maximum exploitable concurrency of 244

threads.
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Input Graphs # Vertices # Edges Avg.Deg.
CA. Road Net. (CRN) 1,965,206 2,766,607 1.41
Mouse Retina 3 (MBR) 562 577,350 1027
Facebook (FB) 2,937,612 41,919,708 14.3
Livejournal (LJ) 4,847,571 85,702,475 17.6
rgg-n-2-24 (RGG) 16,777,216 387,553,689 23.1

TABLE II: Input Graph Networks [24]

Completion times are measured for all graph workloads

at the selected pair of perforation rates (εo, εi). These are

measured only for the kernel function (in the case of GPU and

Xeon Phi), which is the time spent in the parallel regions in the

multicore systems. All the completion times presented in this

paper are normalized to the baseline performing computations

over the original input graph network. The evaluation overhead

of ∼3.3ms for the 160 neurons MLP prediction module is

added to the overall completion time of each benchmark–input

combination. The 6th order regression learner is more complex

than the MLP, hence its overhead of ∼8.1ms is added for

performance comparisons in Section V-D.

Power numbers are recorded at (εo, εi) for all the workloads.

The power utilization results are computed for all architectures

to observe the variance across different systems. Power is

reported for the core package as well as the DRAM ac-

cesses made by parallel execution regions of the application.

Moreover, all these results are normalized to the baseline

simulations to observe improvements.

B. Benchmarks and Inputs

Graph benchmarks are acquired from the CRONO [21], Ro-

dinia [22], and Pannotia [23] benchmark suites. These consist

of Single Source Shortest Path (SSSP), PageRank, Triangle

Counting (TRI-CNT), Community Detection (COMM), and

Connected Components (CONN-COMP). In certain cases a

GPU version of the workload is rewritten to allow interfaces

to different input graphs. However, the CPU version is appli-

cation for the Xeon Phi simulations as well. All benchmarks

use compressed sparse row (CSR) representations for input

graphs. To emulate the runtime environment, program analysis

is evaluated and performed using real world graphs [24], [25],

as shown in Table II.

Training graphs consist of various synthetically generated

graphs with variable vertex and edge counts (degree). 32 input

graphs are used in this regard, with vertices varying between

128 and 16 million, and edge counts per vertex varying

between 2 and 4096. Based on the accuracy results obtained

from inner and outer loop perforations, the prediction module

computes close to optimal pair of perforation rates (εo, εi)
out of different combinations (256 pairs for each benchmark-

input combination = 16 outer loop perforation rates * 16 inner

loop perforation rates) based on a given accuracy threshold

to maximize the efficiency. This means for each outer loop

perforation rate, 16 inner loop perforation rates are applied.

For training, this results in 40, 961 accuracy points, that are

acquired via 32 synthetic graphs and 5 benchmarks.

C. Accuracy Analysis

Program output accuracy is quantified for all benchmark-

input combinations using the combined inner–outer loop per-

foration scheme. The evaluation is presented for an accuracy

threshold of 10%. However, performance improvements vary

with accuracy threshold constraints. Average performance

numbers are also reported for different accuracy thresholds.

The outputs of algorithms with perforated graphs are com-

pared with the outputs of un-perforated graphs. For example,

in the case of SSSP and other algorithms with output arrays,

the output solution arrays are compared, and their percentage

differences are analyzed. Other algorithms have single outputs

such as the total triangle count in triangle counting, which are

compared for accuracy metric. In order for the learner to select

a near optimal perforation rate pair (εo, εi), the learning space

would become large if all the combinations are taken into

account. Therefore, to reduce the space, we analyze proposed

perforation scheme at various inner and outer perforation

rates combinations ranging from 1% to 90% with increments

of 5% (making 256 combinations in total) to observe the

effects of perforation on accuracy of algorithms. Accuracy

is evaluated for all the benchmarks by generating perforated

graph networks. Perforated versions of all input graphs (shown

in Table II) are generated by randomly selecting vertices or

edges. Multiple simulations (1000 in our analysis) are run to

determine a final perforated graph for a specific perforation

method at a certain perforation rate. Accuracy quantification

varies from one benchmark to another. For example, for

TRI-CNT, accuracy is quantified by comparing the triangle

counts obtained from the golden run with the triangle counts

evaluated by the simulations running perforated graphs. On

the other hand, the accuracy for PageRank is quantified by

comparing the golden rank values for each vertex with the

ranks computed using the perforated graphs.

V. EVALUATION

The evaluation analyzes results from varying the inner

and outer perforation rates, and shows the impact on GPU

performance, power, and accuracy of each benchmark-input

combination. Further analysis compares various perforation

strategies, with and without the input-aware loop perforation

learner (utilizing the neural network learner), for various

parallel machines.

A. Accuracy Results

The combinations of outer and inner loop perforation rates

(εo, εi) are used for quantifying accuracy losses at a given

accuracy loss threshold. However, because of the perforation

rate space being too large due to a large number of (εo, εi)
combinations, accuracy results for this exhaustive space are

not shown in this paper. Figure 6 shows the accuracy loss of

algorithms for different input graphs when subjected only to

outer loop perforation. Various accuracy results are acquired

on the Xeon CPU by running graph algorithms at different

perforation rates. The accuracy losses for each benchmark in

Figure 6 are reported with the increasing order of the density
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Fig. 7: GPU performance improvements for the naive loop

perforation where outer loop perforation rates are statically

chosen on a per-benchmark granularity.

of the input graph. As shown in Table II, it is evident that the

density (D) of the input graphs increases in the order DCRN <
DFB < DLJ < DRGG < DMBR. The following observations

are summarized based on the collected data:

1) As perforation rates increase, the accuracy losses are

observed to rise for all benchmark-input combinations.

2) The density and connectivity of the input graph plays

an important role in output accuracy. With the increase

in graph density, more computations are dropped as a

consequence of perforation for a given accuracy loss

threshold.

As expected, the effects of perforating edges or vertices are

different for each benchmark-input combination. This variation

shows the importance of capturing input dependence for

graph algorithms. Similar trends are observed when all the

benchmark-input combinations are subjected to inner loop

perforation (results not shown). However, the accuracy losses

are low as compared to outer loop perforation. This is due to

the fact that inner loop perforation drops less computational

work compared to outer loop perforation. We observe that on

average ∼36.89% more computational work is dropped via

outer loop perforation in comparison to inner loop perforation.

Similar trends are observed when both the outer loop and inner

loop perforation spaces are considered together.

B. Statically Choosing Perforation Rates

Figure 7 shows the performance improvements for the case

when outer loop perforation rates are statically chosen for all
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Fig. 8: Normalized GPU completion times, power, and ac-

curacy loss for each benchmark-input combination at the

perforation rate pairs (εo, εi) provided by the learner.

input graphs, and applied for each graph benchmark. Statically

dropping outer loop iterations (or vertices) results in minimum

accuracy loss for a given benchmark-input combination. The

programmer selects an outer loop perforation rate that satisfies

the accuracy threshold for all inputs of a graph benchmark.

However, this does not guarantee optimal performance as

some benchmark-input combinations may satisfy the accuracy

threshold at a higher perforation rate. Thus, it is better to

use different perforation rates for different benchmark-input

combinations. A static outer loop perforation rate of 10% is

the best candidate for the Tri-Cnt, Community, and Conn-

Comp benchmarks satisfying the 10% accuracy loss threshold.

Outer loop perforation rates of 20% and 1% are chosen for

PageRank and SSSP respectively. The reason for applying a

lower perforation rate for SSSP is because it has propagative

dependencies across outer loop iterations. Loop perforation

results in propagation of accuracy losses. Due to its structure,

SSSP requires lower perforation rate to meet the accuracy

loss threshold, leaving no margin for significant performance

improvements. However, the remaining benchmarks tolerate

higher perforation rates that satisfy the accuracy loss threshold.

Overall, the static loop perforation scheme delivers ∼13%

performance improvement.

C. Proposed Input-Dependence Aware Perforation

Figure 8 shows the normalized GPU completion times,

power utilization, and the accuracy loss at the selected perfo-

ration rate pairs for each benchmark-input combination. Based

on the accuracy threshold, the proposed learning model selects

close to optimal outer and inner loop perforation rate (εo,

εi) pairs. The MLP learner provides an accuracy of 90.8%
when applied to real-world graph inputs, bringing the accuracy

close to near optimal efficiency. To operate near the accuracy

threshold, the learner provides (εo, εi) pairs such that all the

benchmarks show accuracy losses in the region of threshold

of 10%– geometric mean accuracy loss value is 9.92%.

The performance results are normalized to the completion
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Fig. 9: Comparisons of the proposed input-aware loop per-

foration learner (with & without overhead) to the naive and

optimal perforation approaches.

times of the algorithms running graph inputs with no perfo-

ration. Graph algorithms operating at the selected perforation

rates provide an average performance improvement of ∼29.5%

on the GPU. One critical observation in Community-RGG
combination is that the completion time is much lower as

compared to other benchmark-input combinations. This is

mainly because of the fact that the learner has selected a better

perforation rate compared to the naive approach. This also

happens because Community is structured in a way that most

of the computations are done within the outer loop among

different phases. As discussed in Section III-C, the proposed

perforation scheme maximizes the outer loop perforation rate,

which maximizes the drop in edge computations. The perfor-

mance is further optimized because perforating a large graph

(RGG) allows it to be tiled properly in the smaller GPU cache.

For SSSP, a lower perforation rate is applied because higher

rates increase accuracy losses due to the propagative aggra-

vation of shortest path costs, and hence acquired performance

improvements are minimal. Similar trends are observed for the

power utilization of the GPU. An average power utilization

improvement of ∼19.0% for the GTX-970 GPU is observed.

D. Input-aware Learner vs. Naive and Optimal Approaches

Figure 9 shows the comparisons of static perforation versus

an all-optimal implementation and the proposed learner (with

and without learning overheads). The average completion time

results are normalized to no perforation results for the GPU.

The optimal version uses all-optimal hand-tuned perforation

rates for each benchmark-input combination, providing an

accuracy loss equivalent to the threshold value and the best

performing data point. The figure also shows the performance

numbers for the combined inner-outer loop perforation ap-

proach (I/O P ± Learner), with and without the MLP learner

overheads added to each benchmark-input combination. The

MLP learner introduces an overhead of about ∼1% to the

proposed perforation scheme, as observed in Figure 9. Over-

all, the proposed perforation approach performs close to the

optimal version with a modest overhead of around 1.2% when

averaged across various configurations. The proposed perfo-

ration scheme shows an average performance improvement

of ∼16.9% (with the learner overhead) over the the naive

approach.

Learner {Accuracy (%), Normalized Performance}
Regression 4th 5th 6th 7th

77 0.88 84 0.84 91 0.76 94 0.78

MLP 64 128 160 256
70 0.91 82 0.82 90 0.70 93 0.73

TABLE III: Comparisons between learning schemes. Normal-

ized performance taken from a GPU setting (lower is better).
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Fig. 10: Performance Vs. Accuracy Threshold comparisons for

various benchmarks (average is taken for all input graphs).

Table III shows the accuracy and performance for various

parameters of the target learners. Regression based learner

is shown to have higher overheads but similar accuracy to

the MLP learner. This makes the case to deploy the MLP

learner for perforated graph learning. Moreover, the MLP

learner is less complex as compared to the regression based

learner. Therefore, it leads to a lower latency implementation

as discussed in Section IV-A. Given a 90% average accu-

racy for various inputs and accuracy thresholds give best

performance, it is selected as the default learner. A 6th order

regression equation and a 160 neuron multi-layer perceptron

based learner enables this accuracy.

E. Impact of Accuracy Threshold on Performance

Figure 10 shows the impact of various accuracy thresholds

on performance. Each point in the figure shows the average

performance improvement over all the input graphs for every

benchmark. As expected, higher accuracy thresholds provide

higher performance improvements due to more potential per-

foration opportunities. SSSP shows the lowest performance

benefits throughout the analysis. This happens because the

computations done in each iteration of the algorithm propagate

to future iterations, making it sensitive to accuracy losses.

The learning framework also provides lower classification

accuracy for lower accuracy thresholds, which happens be-

cause there are more variables and non-linearities in such

regions. Performance and accuracy points spread out at higher

thresholds as more work is perforated, exhibiting benchmark-

input differences. Benchmarks with more parallelism and

compute, such as PageRank and Community tolerate higher

perforation rated, while other benchmarks, such as SSSP with

more control code do not tolerate higher perforation rates. An
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Fig. 11: Normalized CPU and Xeon Phi completion times

at selected perforation rate pairs (εo, εi) for 10% accuracy

threshold.

average classification of 90% is seen for all analyzed accuracy

loss thresholds.

F. Performance & Power Results for two CPU Machines

Figure 11 shows the normalized power and completion

times for benchmark-input combinations running on a 8-core

Xeon and a 61-core Xeon Phi machine at perforation rates

selected by the learner. We observe that GPU outperforms both

CPUs in terms of performance. The CPUs show an average

performance improvement of ∼21% and ∼24%, which is

lower as compared to the GPU (∼29.5%). This is due to

the fact that GPUs have more computational units, potentially

allowing more proportional performance gains from dropping

edges. Moreover, GPUs have smaller caches, thus perforating a

large graph reduces off-chip misses and consequently improves

performance. The Xeon Phi outperforms Xeon because of the

increased thread count of Xeon Phi, potentially resulting in

more perforation performance. Similar results are observed for

power utilization. The trend of power utilization of different ar-

chitectures is PowerGPU < PowerXeonPhi < PowerCPU .

GPU provides a power utilization improvement of ∼19% (c.f.

Figure 8), while Xeon Phi and Xeon CPUs result in ∼14%

and ∼12% power reductions respectively.

VI. CONCLUSION

This paper proposes novel insights about input dependence

in graph algorithms in the context of approximate comput-

ing. To exploit the efficiency versus accuracy tradeoffs, an

input-aware loop perforation scheme is proposed for graph

algorithms. The perforations are selectively applied on graph

input data rather than on the graph algorithm itself. This is

done so as to mitigate the algorithmic code overheads of

perforating loops. Moreover, a machine learning framework

is developed to predict perforation rates for a user-defined

output accuracy threshold. This input dependence aware loop

perforation scheme allows a perforated graph execution at

near-optimal accuracy threshold, while delivering performance

gains and energy reductions. Results show an improvement of

∼30% in performance, and ∼19% in power utilization on an

Nvidia GPU machine. Similar results are also observed for

two multicore CPU machines.
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